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Abstract 

Deep learning architectures comprising tens or even hundreds of 

convolutional and fully-connected hidden layers differ greatly from the 

shallow architecture of the brain. Here, we demonstrate that by increasing 

the relative number of filters per layer of a generalized shallow 

architecture, the error rates decay as a power law to zero. Additionally, a 

quantitative method to measure the performance of a single filter, shows 

that each filter identifies small clusters of possible output labels, with 

additional noise selected as labels outside the clusters. This average 

noise per filter also decays for a given generalized architecture as a power 

law with an increasing number of filters per layer, forming the underlying 

mechanism of efficient shallow learning. The results are supported by the 

training of the generalized LeNet-3, VGG-5, and VGG-16 on CIFAR-100 and 

suggest an increase in the noise power law exponent for deeper 

architectures. The presented underlying shallow learning mechanism 

calls for its further quantitative examination using various databases and 

shallow architectures. 
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1. Introduction 

Traditionally, neural network learning techniques stem from the dynamics of the 

brain[1, 2], however, these two scenarios are intrinsically different. One of the 

most prominent differences is the number of feedforward layers. Deep learning 

(DL) architectures typically consist of numerous convolutional and fully-

connected (FC) hidden layers that can be increased to hundreds[3, 4]. These 

deep architectures enable the efficient supervised learning of complex 

classification tasks[5, 6], made possible by the advancement of powerful GPU 

technology. Contrastingly, the brain differs significantly from DL architectures 

and consists of very few feedforward layers[7-9], only one of which 

approximates convolutional wiring, mainly from the retinal input to the first 

hidden layer[7, 10]. Despite the shallow architecture and noisy and slow 

dynamics of the brain, it can efficiently perform complex classification tasks. 

The key objective of our research is to reveal the mechanism underlying 

efficient shallow learning that enables to achieve nontrivial classification tasks 

with the same accuracy as DL.  

   Until recently, the terminology of how DL works was based on features that 

are progressively revealed with the layers[5, 11-14]. The first convolutional 

layer (CL) reveals the local features of an input object, where large-scale 

features, features of features that characterize a class of inputs are 

progressively revealed in subsequent CLs[5, 15-17]. 

   Recently, a quantitative method for explaining the underlying mechanism of 

successful DL has been presented[18, 19]. This enables quantifying the 

progressing accuracies with the layers and the functionality of each filter, 

consisting of the following three main stages. In the first stage, the entire deep 

architecture is trained using optimized parameters to minimize the loss function. 

In the second stage, the weights of the first selected number of trained layers 

remain unchanged, and their outputs are FC with random initial weights 

assigned to the output layer, representing the labels. Training only the FC layer 

indicates that the test accuracy progressively increases with the number of 

layers toward the output. In the last stage, the single-filter performance is 

estimated, where all the weights of the FC layer are silenced, except for the 

specific weights that emerge from a single filter. The test inputs are then 



presented and influence the output units only through the small aperture of a 

single filter.  

   The results indicate that each filter identifies small clusters of possible output 

labels, with additional noise selected as labels outside the clusters. This noise 

per filter progressively decays with the layers, thereby resulting in enhanced 

signal-to-noise ratios and accuracies[19], which represents the mechanism 

underlying successful DL. In the following, we demonstrate that the mechanism 

underlying efficient shallow learning is similar to that of DL. However, the 

progressive effect with the layers is interchanged with increasing the number of 

filters in generalized shallow architectures. 

 

2. Results 

2.1. Generalized LeNet-3 trained on CIFAR-100 

 

The generalized shallow architecture LeNet-3 consists of two 5 × 5 CLs, with 

𝑑 and 
16

6
⋅ 𝑑 filters, respectively, preserving the LeNet-5 ratio (𝑑 = 6)[20] (Fig. 

1(a)). The  25 ⋅
16𝑑

6
 outputs of the 2 × 2 max-pooling of the second CL, are FC 

to the 100 outputs, representing the CIFAR-100 labels (Fig. 1(a)).   

   The generalized LeNet-3 was first trained on CIFAR-100 using optimized 

parameters to minimize the loss function. The test error, 𝜀, was observed to 

follow a power law as a function of the number of filters in the first CL, 𝑑 (Fig. 

2(a)), which was previously obtained for the generalized LeNet-5 trained on 

CIFAR-10[21]. For a given 𝑑 and weights that minimized the loss function, the 

performance of each of the 
16𝑑

6
  filters was estimated using the following 

procedure: All the weights of the FC layer were silenced except for the specific 

25 weights that emerged from a single filter (Fig. 1(b)). The CIFAR-100 test 

inputs were presented to the silenced LeNet-3 (Fig. 1(b)) and the results were 

represented by a 100 × 100 matrix 𝑀 (Fig. 1(c), top). Element 𝑀(𝑖, 𝑗) represents 

the average fields generated by label 𝑖 test inputs on output 𝑗, where the matrix 

elements are normalized by their maximal element. Next, a three valued 

(colors) clipped version of the matrix was calculated following a given threshold 

(Fig. 1(c), middle); 𝑀(𝑖, 𝑗) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (white), 𝑀(𝑖, 𝑗) ≤ −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (green) 



and |𝑀(𝑖, 𝑗)| < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (black). Permutations of these clipped matrix labels 

(Fig. 1(c), bottom) resulted in above-threshold diagonal clusters (white) of 1 ×

1, 2 × 2 and 4 × 4 (magnified upper-left corner red box). The above-threshold 

elements outside the diagonal clusters were defined as filter noise 𝑛 (yellow 

elements in Fig. 1(c), bottom). The results indicate that the average noise per 

filter 𝑛 follows an approximate power law as a function of 𝑑 (Fig. 2(b)). 

   The extrapolation of the approximated power law of the test error, 𝜀, as a 

function of 𝑑 (Fig. 2(a)) indicates that using LeNet-3 with a large enough 𝑑, any 

small 𝜀 can be achieved. The mechanism underlying efficient shallow learning 

is the decrease of the average noise per filter, 𝑛, as a power law with increasing 

𝑑.  

   The necessary condition of reduced 𝑛 to enhance the accuracy was 

quantitatively formulated based on the detailed statistical features of the 

filters[18]. Here, we present only the following qualitative argument. The 

emergence of small clusters in a given filter, represented by the diagonal blocks 

of the permuted matrix (e.g., 1, 2, and 4 in Fig. 1(c), bottom), strongly enhances 

the knowledge of the input label. For example, an input with a strong field on 

an output unit belonging to a cluster of size 2 strongly indicates that the input 

belongs to one of these two labels. Each cluster identifies a small subset of 

possible output labels, whereas the noise 𝑛 selects labels outside the cluster, 

thereby reducing the certainty of the input label. This quantitative argument is 

based on the single-filter performance, and the achievement of high accuracy 

emerges from the statistical selection of all filters[18], where many of their 

clusters select the correct label and induce low noise on the others.  

   A unique feature of the filters in LeNet-3 that is absent in deeper architectures, 

is the emergence of many negative matrix elements smaller than – 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

(Fig. 1(c), green). A green off-diagonal element, 𝑀(𝑖, 𝑗), represents a strong 

repulsion, where the average fields generated by the label 𝑖 test inputs on 

output 𝑗 (≠ 𝑖), is significantly negative. This type of repulsion may decrease the 

probability of error in the predicted output label, further enhancing the accuracy 

and balancing some of the noise, 𝑛. Indeed, the probability of green matrix 

elements in rows associated with the clusters (e.g., the seven upper rows in 

Fig. 1(c), bottom) is significantly higher than for those in other rows. For 



example, the probability of green elements in a row associated with clusters, 

averaged over all 112 filters (𝑑 ⋅
16

6
, 𝑑 = 42), is approximately five times higher 

than for other rows. This higher concentration of repulsive elements in the 

cluster rows enhances the probability of selecting an input label belonging to 

the cluster, thereby partially balancing the noise and enhancing the accuracy.   

   Simulations of LeNet-3 with various 𝑑 values (Fig. 2) indicate that the average 

number of green elements below – 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 decreases with 𝑑 (not shown). 

The possible power-law scaling of the number of green elements with 𝑑 is 

unclear and requires further examination. However, the conjugate trend of 

decreasing noise and repulsive elements with 𝑑 suggests an efficient learning 

mechanism in highly noisy filter environments having a shallow architecture. 

 

 

 

 

 

Fig. 1. Generalized LeNet-3 architecture and its single-filter performance. (a) 

Generalized LeNet-3 architecture for CIFAR-100, consisting of two 5 × 5 CLs 



(light blue) with adjacent 2 × 2 max-pooling operators (light red). (b) Scheme of 

a single-filter performance consisting of 25 output units (red) that are FC to the 

100 outputs (green), where the other weights are silenced (gray). (c) Matrix 

element 𝑀(𝑖, 𝑗) of a filter, as in panel b (𝑑 = 42), denotes the averaged fields 

generated by label 𝑖 test inputs on an output 𝑗, where the matrix elements are 

normalized by their maximal element (top). The clipped matrix following a given 

threshold (middle), 𝑀(𝑖, 𝑗) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (white), 𝑀(𝑖, 𝑗) ≤ −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (green) 

and |𝑀(𝑖, 𝑗)| < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (black). Permutations of the clipped matrix labels 

result in diagonal blocks (white, bottom), 1 × 1, 2 × 2, and 4 × 4 (magnified 

upper-left corner red box), where the above-threshold elements, 𝑛~280, out of 

the clusters are noise elements (yellow). 

 

 

 

Fig. 2. Underlying mechanism of efficient learning of the generalized LeNet-3. 

(a)  Power law of the error rate, 𝜀, as a function of the number of filters in the 

first CL, 𝑑  for generalized LeNet-3 trained on CIFAR-100 (Fig. 1(a)), where the 

standard deviations are comparable to the symbol size. (b) Power law of the 

average noise, 𝑛, as a function of the number of filters in the first CL, 𝑑, and 

their standard deviations.  

 

2.2 Generalized VGG-5 trained on CIFAR-100 

The second relatively shallow architecture examined is the generalized VGG-

5, consisting of four consecutive pairs of 3 × 3 CLs and 2 × 2 max-pooling, 

terminating with 2 × 2 × 8 × 𝑑 input units which are FC to the 100 output units 

(Fig. 3(a)). The number of filters in the four CLs is 𝑑 ⋅ 2𝑘 , 𝑘 = 0, 1, 2, and 3 (Fig. 

3(a)). The test error decreases with 𝑑 and can be approximated by a power law 



as a function of 𝑑, with a similar small exponent, ∼ −0.23, as for the generalized 

LeNet-3 (Figs. 2(a) and 3(b)). The average noise per filter measured at the FC 

layer also decays approximately as a power law with 𝑑, with an exponent ~ −

0.61. Note that the clipped matrices associated with the 8 ⋅ 𝑑 filters (not shown) 

do not include green negative elements below – 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.  

 

 

Fig. 3. Underlying mechanism of efficient learning on the generalized VGG-5. 

(a) Generalized VGG-5 architecture for CIFAR-100, consisting of four pairs of 

3 × 3 CLs (light blue) and 2 × 2 max-pooling (light red), terminating with 2 × 2 ×

8 × 𝑑 input units that are FC to the 100 output units (green). (b) Power law of 

the error rate, 𝜀, as a function of 𝑑  for generalized VGG-5 trained on CIFAR-

100. (c) Power law of the average noise per filter, 𝑛, as a function of 𝑑, and their 

standard deviations.  

 

 



2.3 Generalized VGG-16 trained on CIFAR-100 

A comparison of the presented results for the generalized LeNet-3 and VGG-5 

suggests that the power-law exponent of the test error is almost independent 

of the number of CLs (Figs. 2(a) and 3(b)). However, the power-law exponent 

of the average noise per filter increases for deeper architectures (Figs. 2(b) and 

3(c)). To further examine this hypothesis, the results were extended to the 

generalized VGG-16, where the number of filters in CLs (1 − 2), (3 − 4), (5 −

7), (8 − 13) are 𝑑, 2 ⋅ 𝑑, 22 ⋅ 𝑑, 23 ⋅ 𝑑, respectively[20].  

   In the first step, the generalized VGG-16 was trained on CIFAR-100 with 

optimized parameters[18]. Next, the weights of the first 10 trained layers were 

held unchanged, and their 2 × 2 ⋅ 8 ⋅ 𝑑 outputs were FC to the output layer. 

Training this FC layer to minimize the loss function indicates that the test error, 

𝜀, is already saturating at the 10th layer[18]. In addition, 𝜀 as a function of 𝑑 

approximately scales as a power law with an exponent, ~ − 0.29 (Fig. 4(a)), 

which slightly increases in comparison to VGG-5 (Fig. 3(a)). This power-law 

behavior is consistent with the recently obtained results for the generalized 

VGG-16 trained on CIFAR-10[21]. The average noise per filter, 𝑛, as a function 

of 𝑑, also scales approximately as a power law with an exponent of ~ − 1.2 (Fig. 

4(b)). A comparison of this result with the power-law noise exponents ~ − 0.38 

and ~ − 0.61 for the generalized LeNet-3 and VGG-5 (Figs. 2(b) and 3(c)), 

respectively, supports the hypothesis that the power-law noise exponent 

decreases for deeper architectures consisting of increasing number of CLs. We 

note that below threshold elements (green in Fig. 1(c)) are absent in the clipped 

matrices of the 10th layer. 

   The decrease in the average noise per filter, 𝑛, as a function of 𝑑 (Fig. 4(b)) 

also affects the noise distribution among the 512 filters of the 10th layer (Fig. 

4(c)). The distribution became narrower as 𝑑 increased from 8 to 64, where its 

standard deviation appears to scale linearly with the mean.  

   The decrease in 𝑛 as a function of 𝑑 in the 10th layer (Fig. 4(b)), did not reveal 

the characteristic features of noise in the much lower layers. Recently, the 

training of VGG-16 (𝑑 = 64) on CIFAR-100 indicated that the accuracy 

increases progressively from the 2nd layer to the 10th layer, where the average 

noise per filter 𝑛 decreases[18]. In addition, the common features of the filter 



noise in the 2nd layer of VGG-16 (Figs. 4(d) and (e)) resembled the clipped 

matrices of the filters in the second CL of LeNet-3 (Fig. 1(c)). Each filter selects 

several small clusters among the 100 labels. These clusters are accompanied 

by a large number of noise elements, mainly along their columns (Fig. 4(d), 

yellow) and with additional repulsive elements below – 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (Fig. 4(d), 

green), which mainly form several columns.   



 

 

Fig. 4. Underlying mechanism of efficient learning of generalized VGG-16. (a) 

Power law of the error rate, 𝜀, as a function of the number of filters in the first 

CL, 𝑑,  measured at the output of the 10th layer (see text) for generalized VGG-



16 trained on CIFAR-100. (b) Power law of the average noise per filter, 𝑛, as a 

function of 𝑑, and their standard deviations. (c) Noise distribution of the 512 

filters (averaged over five samples) at the 10th layer for 𝑑 = 8 (left) and 𝑑 =

64 (right). Average/standard deviation of the distributions (~ 162/120 for 𝑑 =

8 and  ~ 15.3/15 for 𝑑 =  64) are denoted by vertical/horizontal dashed-red 

lines, respectively. (d) The clipped matrix, 𝑀, of a filter at the 2nd layer of VGG-

16 with 𝑑 = 64, where 𝑀(𝑖, 𝑗) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (white), 𝑀(𝑖, 𝑗) ≤ −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

(green) and |𝑀(𝑖, 𝑗)| < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (black), and its permuted matrix with an 

element of the clusters (white) (similar to Fig. 1(c), middle and bottom). Above 

threshold elements outside the clusters are denoted as noise elements (yellow). 

 

3. Discussion  

The underlying mechanism of shallow learning was quantitatively examined for 

generalized LeNet-3 and VGG-5 architectures trained on CIFAR-100. A 

generalized architecture comprises a family of architectures with varying 

number of filters, 𝑑, in the first CL; while the ratio between the number of filters 

in consecutive CLs remains fixed. The discovery of the shallow-learning 

mechanism consists of the following two-step procedure: First, the generalized 

architecture is trained to minimize the loss function. Second, the single filter 

performance is estimated for the CL adjacent to the outputs, where all weights 

of the FC layer are silenced, except for the specific weights that emerge from a 

single filter.  

   The test inputs are then presented, which influence the output units only 

through the small aperture of a single filter. The results indicate that both test 

error, 𝜀, and the average noise per filter, 𝑛, approximately decay as a power 

law with an increase in the number of filters in the first CL, 𝑑.  

    The efficient learning mechanism, which stems from the decrease in 𝑛, is 

common to both shallow and deep architectures. In deep architectures, 

𝑛 decreases progressively with the number of layers, whereas in generalized 

shallow architectures the decrease stems from the increasing the number of 

filters in the first CL, 𝑑. The tunable parameter 𝑑 enables the observation of its 

approximated power-law scaling with 𝑛, whereas in a deep architecture, the 

tunable parameter is currently unclear. The preliminary results indicate a 



decrease in the power-law exponent of 𝑛 with 𝑑, for generalized shallow or deep 

architectures with increasing number of CLs. This result calls for its further 

quantitative examination using various databases and generalized shallow and 

deep architectures. 

   For the very shallow architecture, LeNet-3, the noise 𝑛 is found to be partially 

balanced by another mechanism, the emergence of very negative elements. 

Preliminary results indicate that the number of those negative repulsive 

elements (Fig. 1(c)) decreases with 𝑑, however its scaling, similar to 𝑛, 

deserves further research. This mechanism was also observed in the second 

CL of VGG-16, but completely disappeared in the last CL of VGG-5 and VGG-

16. These results suggest that repulsive elements are expected to be an 

additional common learning mechanism for the very first CLs in both shallow 

and deep architectures, however, their quantitative and statistical features 

deserve further research. 

   Finally, the efficient realization of shallow architectures with a large 𝑑 requires 

a shift in the properties of advanced GPU technology. Above a critical number 

of filters, depending on the GPU properties and properties of the dataset, the 

running time of an epoch is significantly slowed down. The GPU based 

architectures are capable of efficiently calculate forward and backward steps 

for a hundred times more layers, but not for a hundred times more filters per 

layer. Therefore, the realization of efficient learning in shallow architectures, 

mimicking the brain's dynamics, requires a new type of hardware. 

    

 

4. Methods 

4.1 Architectures and training of the fully-connected layers  

In this study, three architectures were examined: LeNet-3, a modified version 

of LeNet-5[22], constituting only one FC layer instead of three; VGG-5, a 

modification of VGG-6[11] constituting only four CLs instead of five; and VGG-

16[11]. The architectures were trained to classify the CIFAR-100 dataset[15], 

with no biases on the output units to ensure that each filter’s effect on the output 

fields would be exemplified and not overshadowed by the much larger biases. 



Removing the biases of the output layer did not affect the architectures’ average 

accuracies, in comparison to architectures trained with output biases. 

   The evaluation was performed by taking an architecture trained on the entire 

dataset, cutting it at designated layers and training a new FC layer between the 

output of that specific layer and the output layer. During this training process, 

only the FC layer was trained, whereas the weights and biases of the rest of 

the architecture remained fixed. For VGG-16, the evaluation was performed on 

layer 10. For VGG-5 layer 4 was evaluated. For LeNet-3 the evaluation was 

performed without training a new FC layer. 

 

4.2 Optimization  

The cross-entropy cost function was selected for the classification task and 

minimized using the stochastic gradient descent algorithm[6, 13]. The maximal 

accuracy was determined by searching through the hyper-parameters (see 

below). Cross-validation was performed using several validation databases, 

each consisting of a randomly selected fifth of the training set examples. The 

average results were within the same standard deviation (Std) as the reported 

average success rates. The Nesterov momentum[23] and L2 regularization 

method[24] were applied.  

 

4.3 Dataset and preprocessing  

The image pixel in the CIFAR-100 dataset[15] were normalized to the range  

[−1, 1] by dividing by 255 (the maximal pixel value), multiplying by 2, and 

subtracting 1. In all simulations, data augmentation derived from the original 

images was performed, by random horizontal flipping and translating up to four 

pixels in each direction. 

 

4.4 Hyper-parameters  

The hyper-parameters 𝜂 (learning rate), 𝜇 (momentum constant[23]), and 𝛼 (L2 

regularization[24]) were optimized for offline learning, using a mini-batch size 

of 100 inputs. The learning-rate decay schedule[25] was also optimized. A 

linear scheduler was applied such that it was multiplied by the decay factor, q, 



every Δt epochs, and is denoted below as (q, Δt). Different hyper-parameters 

were used for each architecture. 

 

4.5 LeNet-3 hyper-parameters 

LeNet-3 with 𝑑 number of filters in the first CL, was trained for at least 240 

epochs using the following hyper-parameters to achieve maximal accuracy on 

CIFAR-100: 

LeNet-3 on CIFAR-100 

𝑑 η μ α 

3 0.016 0.9 5e-4 

6 0.021 0.905 9.1e-4 

12 0.06 0.85 8e-4 

18 0.038 0.93 1.1e-3 

42 0.08 0.86 8e-4 

 

Table 1.  Hyper-parameters for LeNet-3 trained on CIFAR-100. 

where the decay schedule for the learning rate for 𝑑 = 3 is: 

(q, Δt) = {
(0.85, 10), 𝑒𝑝𝑜𝑐ℎ < 120
(0.75, 10), 𝑒𝑝𝑜𝑐ℎ ≥ 120

 

and for any different 𝑑: 

(q, Δt) = {
(0.8, 10), 𝑒𝑝𝑜𝑐ℎ < 120
(0.7, 10), 𝑒𝑝𝑜𝑐ℎ ≥ 120

 

 

In this case, there was no separate training of the FC layer. 

 

4.6 VGG-5 hyper-parameters 

VGG-5 was trained over 300 epochs using the following hyper-parameters to 

achieve maximal accuracy on CIFAR-100: 

VGG-5 on CIFAR-100 

𝑑 η μ α 

8 2e-2 0.976 3.75e-3 

16 2.2e-3 0.976 3.8e-3 

32 2e-3 0.976 3.75e-3 



64 2.2e-3 0.976 3.75e-3 

 

Table 2.  Hyper-parameters for VGG-5 trained on CIFAR-100. 

The decay schedule for the learning rate during training of the entire system is 

defined as follows: 

(q, Δt) = {
(0.65,20)          160 > 𝑒𝑝𝑜𝑐ℎ
(0.55,20)          160 ≤ 𝑒𝑝𝑜𝑐ℎ

 

For the training of the FC layer, 𝜂 = 0.001, 𝜇 = 0.975, 𝛼 = 4𝑒 − 3, with a 

learning rate scheduler of 𝑞 = 0.65 every 20 epochs, and the other weight 

values and biases of the architecture remained fixed. 

 

4.7 VGG-16 hyper-parameters 

VGG-16 was trained over 300 epochs using the following hyper-parameters to 

achieve maximal accuracy on CIFAR-100: 

VGG-16 on CIFAR-100 

𝑑 η μ α 

4 1.5e-3 0.977 4.1e-3 

8 1.5e-3 0.977 4.1e-3 

16 3e-3 0.968 4e-3 

32 1.5e-3 0.977 4.1e-3 

64 2e-3 0.975 4e-3 

 

Table 3.  Hyper-parameters for VGG-16 trained on CIFAR-100. 

The decay schedule for the learning rate during training of the entire system is 

defined as follows: 

(q, Δt) = {
(0.65,20)          160 > 𝑒𝑝𝑜𝑐ℎ
(0.55,20)          160 ≤ 𝑒𝑝𝑜𝑐ℎ

 

For the training of the FC layer, 𝜂 = 0.004, 𝜇 = 0.975, 𝛼 = 1.5𝑒 − 3, with a 

learning rate scheduler of 𝑞 = 0.65 every 20 epochs, and the other weight 

values and biases remained fixed. 

 

4.8 Raw data of the figures 

   The raw data of the error rate 𝜀 and the average noise 𝑛 of the figures are 

presented in the following tables. 



 

 

Results for Fig 2. LeNet-3 on CIFAR-100 

𝑑 𝜀 𝑆𝑡𝑑(𝜀) 𝑛 𝑆𝑡𝑑(𝑛) 

3 0.720 0.0048 827.8 88.6 

6 0.613 0.0049 676.1 52.0 

12 0.509 0.0036 504.4 39.0 

18 0.464 0.0034 438.2 27.3 

42 0.403 0.0021 305.0 8.3 

 

Table 4.  The results for Fig. 2, LeNet-3 trained on CIFAR-100. 

 

Results for Fig 3. VGG-5 on CIFAR-100 

𝑑 𝜀 𝑆𝑡𝑑(𝜀) 𝑛 𝑆𝑡𝑑(𝑛) 

8 0.496 0.0051 342.2 33.3 

16 0.395 0.0029 246.6 26.6 

32 0.334 0.0045 153.2 5.9 

64 0.308 0.0015 96.9 5.2 

 

Table 5.  The results for Fig. 3, VGG-5 trained on CIFAR-100. 

Results for Fig 4. VGG-16 on CIFAR-100 

𝑑 𝜀 𝑆𝑡𝑑(𝜀) 𝑛 𝑆𝑡𝑑(𝑛) 

4 0.566 0.0022 380.1 22.7 

8 0.441 0.0035 181.7 20.0 

16 0.366 0.0048 80.0 4.3 

32 0.295 0.0057 23.5 1.3 

64 0.250 0.0034 15.3 0.7 

 

Table 6.  The results for Fig. 4, VGG-16 trained on CIFAR-100. 

 

   For LeNet-3 the accuracy is 0.387 for 𝑑 = 6 filters in the first CL (Table. 4), 

whereas the achievable accuracy for LeNet-5 is ~0.43. For VGG-5, the 



accuracy is 0.692 for 𝑑 = 64 filters (Table. 5) whereas the achievable accuracy 

for VGG-6 is ~0.71. 

 

4.9 Calculation of clusters and noise  

For CIFAR-100, the 100 output fields of each filter were summed over all 10,000 

inputs of the test set, resulting in a 100 × 100 matrix, where each cell (𝑖, 𝑗) 

represents the summed field of output field 𝑗 for all test set inputs of label 𝑖. The 

matrix was normalized by dividing it by its maximal value, resulting in each 

matrix having a maximum value of 1. The clipped Boolean output field matrix 

was calculated, where each element whose value was above a threshold (0.3) 

was set to 1, each element below the negative threshold (−0.3) was set to −1, 

and all others were zeroed. Similar qualitative results were obtained for different 

thresholds [0.1, 0.6], where 0.3 represents the matrix’s distribution cutoff 

between high and low values. 

   The axes were then permuted such that all labels belonging to a cluster were 

grouped consecutively, thereby displaying the clusters in an adjacent fashion, 

where they were shown as a diagonal block of elements with value 1. Each 

cluster was defined as a subset of 𝑛 indices, where for each 𝑖, 𝑗 ∈ 𝑛 elements 

(𝑖, 𝑗) have the value of 1. The size of the cluster was defined as 𝑛, where 𝑛 is 

the number of labels whose all pairs (and their permutation) are equal to 1, 

thereby forming a cluster. The minimal cluster size is 1, that is one element on 

the diagonal, or 100, the entire matrix. The elements equal to 1 were then 

colored white, representing that they belong to a cluster in the filter, while non-

cluster cells with a value of 1 were classified as above-threshold external noise 

and were colored yellow; cells with a value of −1 were colored green and the 

rest were zero and colored black. 

   The clusters were calculated by running along the diagonal from index (0,0) 

to (99,99), where the first (𝑖, 𝑖) element with a value of 1 was initially designated 

as a cluster of size 1 × 1. The next (𝑗, 𝑗) element, where 𝑗 ≠ 𝑖, with a value of 1 

was then checked to determine if it can complete a cluster with (𝑖, 𝑖); if yes, it 

was added to the cluster and the next diagonal element with a value of 1  was 

checked. This process was repeated for all value 1 cells in the diagonal, as long 

as there were elements that did not belong to a cluster. This process is not 



uniquely defined, that is, the order by which the indices are iterated can change 

the outcome of the clustering process. For example, a filter with two clusters of 

sizes 3 × 3 and 1 × 1 retrieved by iterating from 0 to 99 can yield, in some very 

rare scenarios, two clusters of size 2 × 2. While possibly alternating the results 

of a single filter, the overall obtained averaged results remain the same when 

performing cluster creation while iterating in reverse order, because these 

scenarios are very rare and occur in a negligible number of filters. 

 

4.10 Negative matrix elements - repulsive elements  

The probabilities of the negative green elements (elements below −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

in rows associated with clusters for LeNet-3 and 𝑑 = 42 (Fig. 1(b)) were 

calculated as follow. By averaging all samples, the averaged cluster size was 

found to be 𝐶𝑠 (𝑑 = 42) = 2.62, and the number of clusters per filter was 𝑁𝑐 (𝑑 =

6) = 2.88.  

   An approximation of the average number of rows associated with a cluster in 

each filter was 𝑁𝑟 (𝑑 = 42) = 𝐶𝑠  × 𝑁𝑐  = 2.62 × 2.88 = 7.55. Hence, there were 

755 values in the clusters’ rows. In addition, the average number of below 

−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  elements per filter was 𝑁𝑛𝑒𝑔 (𝑑 = 42) = 280.25, and that the 

proportion of those elements, that shared a row with a cluster was 0.31. Thus, 

the probability of an element that shared a row with a cluster, to have a value 

below −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 was 𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =
0.31⋅280.25

755
= 0.112. The probability of an 

element which did not share a row with a cluster, to have a value below 

−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 was 𝑃𝑛𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟  (𝑑 = 42) =
(1−0.31)⋅280.25

(100−7.55)⋅100
= 0.021, thus 

𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑑=42)

𝑃𝑛𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑑=42)
= 5.33 

 

4.11 Statistics  

Statistics for all results were obtained using at least five samples. 
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